GuLF DREAM: A model to estimate dermal exposure among oil spill response and clean-up workers
Tens of thousands of individuals performed oil spill response and clean-up (OSRC) activities following the ‘Deepwater Horizon’ oil drilling rig explosion in 2010. Many were exposed to oil residues and dispersants. The US National Institute of Environmental Health Sciences assembled a cohort of nearly 33 000 workers to investigate potential adverse health effects of oil spill exposures. Estimates of dermal and inhalation exposure are required for those individuals. Ambient breathing-zone measurements taken at the time of the spill were used to estimate inhalation exposures for participants in the GuLF STUDY (Gulf Long-term Follow-up Study), but no dermal measurements were collected. Consequently, a modelling approach was used to estimate dermal exposures. We sought to modify DREAM (DeRmal Exposure Assessment Method) to optimize the model for assessing exposure to various oil spill-related substances and to incorporate advances in dermal exposure research. Each DREAM parameter was reviewed in the context of literature published since 2000 and modified where appropriate. To reflect the environment in which the OSRC work took place, the model treatment of evaporation was expanded to include vapour pressure and wind speed, and the effect of seawater on exposure was added. The modified model is called GuLF DREAM and exposure is estimated in GuLF DREAM units (GDU). An external validation to assess the performance of the model for oils, tars, and fuels was conducted using available published dermal wipe measurements of heavy fuel oil (HFO) and dermal hand wash measurements of asphalt. Overall, measured exposures had moderate correlations with GDU estimates (r = 0.59) with specific correlations of −0.48 for HFO and 0.68 for asphalt. The GuLF DREAM model described in this article has been used to generate dermal exposure estimates for the GuLF STUDY. Many of the updates made were generic, so the updated model may be useful for other dermal exposure scenarios.
Publication Number: P/19/16
First Author: Gorman Ng M
Other Authors: Cherrie JW, Sleeuwenhoek A, Stenze M, Kwok RK, Engel LS, Cavallari JM, Blair A, Sandler DP, Stewart P
Download PublicationCOPYRIGHT ISSUES
Anyone wishing to make any commercial use of the downloadable articles on this page should contact the publishers of the journals. Please see the copyright notices on the journals' home pages:
- Annals of Occupational Hygiene
- Occupational and Environmental Medicine
- American Journal of Respiratory Cell and Molecular Biology
- QJM: An International Journal of Medicine
- Occupational Medicine
Permissions requests for Oxford Journals Online should be made to: [email protected]
Permissions requests for Occupational Health Review articles should be made to the editor at [email protected]